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Realizability

Existence questions:
1. Given L/K Galois with group Γ, for which G with |G| = |Γ| is there a
Hopf Galois structure on L/K of type G?
2. Given an “additive” group G = (G, ?), for which Γ with |Γ| = |G| is
there a skew brace structure on G so that the adjoint group G◦ ∼= Γ?

A neutral version of these questions:
Let Γ,G be two groups of the same order. Call (Γ,G) realizable if there
is a Γ-Galois extension with a Hopf Galois structure of type G, or
equivalently, there is a skew brace B = (B, ◦, ?) with adjoint group
B◦ ∼= Γ and additive group B? ∼= G.
The equivalence follows from the correspondence between Hopf
Galois structures on Galois extensions of fields and skew braces.
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Viewpoints

Historically, the realizability question has been looked at in different
ways by Hopf Galois theorists and brace theorists.
Hopf Galois theorists have typically started with the Galois group and
asked about types.
Brace theorists have typically started with the additive group (which
until 2016 was always abelian) and asked about possibilities for the
adjoint group.
In this talk we’ll try to be unbiased and just ask about realizability of
(Γ,G).
This is mostly a “history of math” talk...
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p-groups, p odd, cyclic case

The earliest non-trivial realizability results were in Nigel’s uniqueness
paper [By96] and Tim Kohl’s:

Theorem (Ko98)
Let Γ ∼= Cpn be cyclic of order pn for p odd, then (Γ,G) is realizable
only for G ∼= Γ.

The proof reduces to showing that if G is a non-cyclic group of order
pn, then Hol(G) has no element of order pn, which implies that there is
no regular embedding of Γ into Hol(G).
Commentaries or new proofs of Kohl’s result may be found in [By07]
and Tsang [19].

Lindsay N. Childs Existence theorems 4 / 40



p-groups, p odd, cyclic case, ctd.

Soon after inventing braces, W. Rump considered the reverse problem
to Kohl’s. [Ru07] studied braces (B, ◦,+) where G+ ∼= Cpn (“cyclic
braces”) and determined the groups Γ for which (Γ,G) is realizable.
His question was: given a brace B with additive group Cpn , what could
the adjoint group B◦ be? For HGS theorists: for which Galois groups Γ
of order pn could L/K have a Hopf Galois structure of cyclic type?

Theorem
For p odd, if B is a brace of order pn and G = B+ is cyclic of order pn,
then the adjoint group Γ = B◦ is also cyclic.
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Crepo-Salguero

Rump’s result was independently proved by Crespo and Salguero in
the Hopf Galois setting [CS19]. Their result specializes to: if L/K is
Γ-Galois and has a Hopf Galois extension of type G, cyclic of odd
prime power degree, then Γ ∼= G.
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Non-cyclic abelian p-group case

Let G be a finite abelian p-group. [FCC12]:

Theorem
Let L/K be a Galois extension with abelian Galois group Γ of order pn.
Suppose L/K has an H-Hopf Galois structure of type G, an abelian
group of order pn and p-rank m where m + 1 < p. Then Γ ∼= G.

Since the p-rank m of an abelian p-group is at most n, this implies that
if Γ is an abelian group of order pn with n + 1 < p, and G is an abelian
group, then (Γ,G) is realizable if and only if G ∼= Γ.
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Commutative radical rings

Extending [CDVS06], Caranti observed that if G is an abelian p-group
of order pn and N is any abelian regular subgroup of
Hol(G) ⊂ Perm(G), then G becomes a commutative radical ring B with
multiplication ·, so that N is isomorphic to the adjoint group G◦ = (G, ◦)
of B (where g ◦ h = g + h + g · h for g,h in B).

The main theorem of [FCC12] then says that if G = G+ has p-rank m
and m + 1 < p, then for every element g of G, the order of g in G+ is
equal to the order of g in G◦. This implies that N ∼= G◦ ∼= G+.
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Bachiller

Since every radical algebra defines a left brace, it was natural (in
retrospect) to try to extend this result to the left brace setting, where
(G, ◦,+) is a left brace with pn elements. This was done by Bachiller
[Bac16] with a proof very similar to [FCC12]:

Theorem
Let G = G+ be an abelian p-group of p-rank m, and (G, ◦,+) be a left
brace with additive group G+. If m + 1 < p, then for every element g of
G+, the order of g in G+ is equal to the order of g in G◦. Hence if G◦ is
abelian, then G◦ ∼= G+.
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Examples

Bachiller’s theorem is illustrated in his work on the classification of
braces of order p3, p odd [Bac14].
There are five groups of order p3: three abelian, namely C3

p , Cp × Cp2

and Cp3 of exponents p,p2 and p3, resp., and two non-abelian groups,
the Heisenberg group H3 of exponent p and the group M3(p) of
exponent p2.
He showed that a brace with additive group of exponent p, resp. p2,
resp. p3 must have a circle group with the same exponent, except
when p = 3.
There exists one brace with additive group C3 × C9 and circle group
C3

3 , and one with additive group C3
p and circle group C3 × C9.

[FCC12] and [Ch07], and, of course, these last examples from [Bac14],
show that the condition m + 1 < p is sharp.
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The elementary abelian case

Bachiller’s theorem when B+ is elementary abelian implies that to
classify braces of order pm with additive group isomorphic to Fm

p , it
suffices to look at adjoint groups of order pm and exponent p. But there
turn out to be many possibilities.
For example, Vaughn-Lee showed that for p ≥ 11 and m = 8, the
number of groups of order p8 and exponent p is

p4 +2p3 +20p2 +147p +(3p +29)gcd(p−1),3)+5gcd(p−1,4)+1246.
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On the realizability of (Γ,Cn
p )

One might ask: Given any group Γ of order pm and exponent p with
m + 1 < p, is there a brace with additive group Cm

p and circle group
∼= Γ?

It’s true for m = 3 < p by Bachiller’s classification [By14]. But [Ba16]
showed that the converse is false. He found a group of order p10 and
exponent p which is not the adjoint group of a brace with additive
group F10

p .
/
Vendramin asks
Problem 31: What is the minimum cardinality of a solvable group which
is not the adjoint group of a left brace?
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2-groups–Byott

The case p = 2 is different, as [By07] showed.

Let Γ = C2n . For n = 1 (Γ,G) is realizable only for G = C2, of course;
But for n = 2, (C2n ,G) is realizable for G cyclic or = C2 × C2, and for
n > 2, G can be C2n , the cyclic group of order 2n, or D2n , the dihedral
group of order 2n, or Q2n , the quaternion group of order 2n ( and there
are equal numbers of Hopf Galois structures of each type).
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2-groups–Rump

From the brace point of view, Rump [Ru07] proved that for G = C2n ,
(Γ,G) = (Γ,C2n ) is realizable if and only if Γ is a group of order 2n with
a cyclic subgroup of index 2.
Thus for n = 3, Γ has one of the following types:
C2n ,C2 × Cn−1

2 ,D2n ( dihedral ),Q2n ( quaternion ). For n ≥ 4 two types
of semidirect products Γ = C2n−1 o C2 can also occur, where

Γ = 〈x , y |x2n−1 = b2 = 1,bab−1 = a−1+2m−2〉

or
Γ = 〈x , y |x2n−1 = b2 = 1,bab−1 = a1+2m−2〉.

For each of these groups Γ (and no others), (Γ,C2n
) is realizable.

Lindsay N. Childs Existence theorems 14 / 40



Nilpotent additive groups

As shown by Smoktunowicz and Vendramin [SV17],

Theorem
Suppose B is a skew brace of order n with a nilpotent additive group
B?. Then B =

∏
p|n Bp where (Bp)? is the p-Sylow subgroup of B?, and

each Bp is a skew brace, as is the product
∏

p∈J Bp for any set J of
distinct primes dividing n.

A special case of this result was obtained by Byott [By12] in the setting
of commutative radical algebras.
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If B+ is nilpotent ...

One consequence is that for each prime p with pr‖n (r > 0), the
product

∏
q 6=p B◦q is a subgroup of B of order p′ = n/pr . Thus it follows

by a theorem of Hall that

Theorem
If B is a skew brace with B? nilpotent, then B◦ is solvable.

This was first proved by Byott [By15].
The Smoktunowicz-Vendramin result (or Byott’s special case) also
implies the Etingof, Schedler and Soloviev [ESS99] theorem that the
adjoint group of a brace is solvable.
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If G is cyclic...

For B? cyclic, results of Rump (2009) on cyclic braces of prime power
order yield

Theorem
([Ru19]) Let B be a brace with G = B+ cyclic of order n. Then Γ = B◦

is solvable, 2-nilpotent and almost Sylow-cyclic.

Here Γ is 2-nilpotent if the 2-Sylow subgroup of Γ is a direct summand
of Γ, and Γ is almost Sylow-cyclic if the p-Sylow subgroups of Γ are
cyclic for p odd, and the 2-Sylow subgroup is either trivial or has a
cyclic subgroup of index 2.
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For n = 80

Rump [Ru19] shows that for Γ a group of order 80, the 2-Sylow
subgroup of Γ could be C16,C8 × C2,D8,Q4, or

M8 = 〈a,b|a8 = b2 = 1,bab−1 = a5〉

or
SD8 = 〈a,b|a8 = b2 = 1,bab−1 = a3〉.

Rump shows that 23 of the 52 groups of order 80 can be Galois
groups of Galois extensions with a Hopf Galois structure of cyclic type.
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Γ nilpotent

If Γ is nilpotent, the question of what G looks like was posed by
Vendramin [Ve18]:
Problem 47: If Γ is nilpotent and (Γ,G) is realizable, must G be
solvable?

But Tsang [TQ20] proved

Theorem
Given groups Γ,G of the same order, suppose (Γ,G) is realizable.
1) If Γ is abelian, then G is metabelian.
2) If Γ is nilpotent, then G is solvable.
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Tsang’s proof for Γ nilpotent

Theorem
If (Γ,G) is realizable and Γ is nilpotent, then G is solvable.

The idea of the proof is to use that if Γ is nilpotent, then so is any
homomorphic image. So let β : Γ→ Hol(G) = λ(G)Aut(G) be a
regular embedding. One observes that λ(G) is a subgroup of
β(Γ)π(β(Γ)) ⊂ Hol(G) where π is the canonical map from Hol(G) to
Aut(G).

Since Γ is nilpotent, so is π(β(Γ)), and the product of nilpotent groups
is known to be solvable. Hence λ(G) is a subgroup of a solvable group.
Tsang’s proof that Γ is abelian implies that G is metabelian follows the
same outline.
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Byott’s Conjecture

In [By15], Byott wrote: ”We do not have any examples where an
extension with insoluble Galois group Γ admits a Hopf-Galois structure
of soluble type”
This is now referred to as
Byott’s conjecture: (Γ,G) is not realizable for Γ insolvable and G
solvable.
Tsang and Qin [TQ20] presents extensive numerical evidence in
support of Byott’s conjecture.
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The opposite to Byott’s conjecture

One might ask the opposite: Could (Γ,G) be realizable for Γ solvable
and G insolvable.

The answer is yes: Byott showed that (A4 × C5,A5) is realizable, using
the method of fixed point free pairs of homomorphisms.
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When Γ must be isomorphic to G

For which Γ is (Γ,G) realizable only for G ∼= Γ? We mentioned [Ko98]
earlier for Γ = Cpn , p odd.
The next big result was in [By04]. If Γ is simple and (Γ,G) is realizable,
then G ∼= Γ.

• [BC12],section 6, contains examples of cyclic groups Γ of odd order
n = p3q (e. g. (p,q) = (7,19) or (11, 7) ) such that every Hopf Galois
structure on a Galois extension with Galois group Γ has only Hopf
Galois structures of type Γ.

• Tsang [Ts19] showed that if Γ = 2An is the double cover of the
alternating group An, then for n ≥ 5, (Γ,G) is realizable only for G = Γ.
Other non-trivial examples are scarce?
How about the opposite extreme?
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Cases where given Γ, G can be anything

Non-trivial examples include
• Γ has order pq where p,q are primes and p ≡ 1 (mod q) [By04a]
• Γ = Hol(Cp) where p is a safeprime, so |Γ| = n = 2pq with q prime
[Ch04].
• Γ is any cyclic group of square-free order [AB18]. Every group G of
square-free order n is a semidirect product. So for Γ = Cn, a Hopf
Galois structure of type G can be constructed via the method of fixed
point free pairs of homomorphisms.
There are likely to be other examples in the square-free case that we’ll
hear about in the next talk.
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Kohl’s non-existence result

Now for something of an entirely different character:
A theorem of Kohl (2018):

Theorem
Kohl (2018): If for some m, G has more characteristic subgroups of
order m than Γ has subgroups of order m, then (Γ,G) is not realizable.

The proof uses the Galois correspondence for Hopf Galois extensions
and the FTGT for classical Galois extensions: a most unbraceful
argument!
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If Γ satisfies property A, then G ...?

Nasybulloh (2018) proved:

Theorem
If Γ is abelian and (Γ,G) is realizable, then G is metabelian.

Byott (2015) gave two proofs that if Γ is abelian and (Γ,G) is realizable,
then G is solvable. His second proof shows that G is a subgroup of a
metabelian group, hence a subgroup of a solvable group, hence
solvable. But it is known that a subgroup of a metabelian group is
metabelian.
What about the opposite: if G is abelian and (Γ,G) is realizable, is Γ
metabelian? The answer is ”no”, as we’ll see soon.
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Metabelian groups and radical rings

Let A be a finite radical (hence nilpotent) ring with An = 0,An−1 6= 0.
Then (A, ◦,+) is a brace, so (A◦,A+) is realizable.
Now A◦ is a nilpotent group of class at most n − 1, because for each k ,
Ak is a normal subgroup of A◦ and

A ⊃ A2 ⊃ . . . ⊃ An−1 ⊃ An = 0

is a central series of A◦. In particular

Theorem
If A is a radical ring with A3 = 0 then (A◦,A+) is realizable and A◦ is
metabelian.
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A converse

Ault and Watters [AW73] prove that if Γ is a finite nilpotent group of
class 2, i. e. metabelian, then there exists a radical algebra A with
A3 = 0 and adjoint group A◦ ∼= Γ. So setting G = A+, we have

Theorem
If Γ is any finite metabelian group, then there is an abelian group G so
that (Γ,G) is realizable.
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Kruse’s example

On the other hand,
Kruse [Kr70]: There is a radical algebra A with p2n elements so that A◦

is not metabelian.
Let G be the additive group of a radical algebra A on two generators
over Z/pnZ with p2n elements, generated as an algebra by a,b with
a2 = ab = pa,b2 = ba = pb and pna = pnb = 0. Then the adjoint
group A◦ has a shortest upper central series

G = A ⊃ pA ⊃ . . . ⊃ pn−1A ⊃ pnA = 1

where c = n is the class of the group A◦.) A metabelian group has
c = 2. So if n ≥ 3 then A◦ is not metabelian.
(But A◦ is clearly solvable.)
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Γ and G can be a lot different

As earlier noted, Γ can be solvable and G simple: (A4 × C5,A5) is
realizable. This is an example of applying the method of fixed point
free pairs to Zappa-Szép products that are not semidirect products.
Let G = HJ be a Zappa-Szép product, let Γ = H × J. Then the two
homomorphisms fH , fJ : Γ→ G by fH(h, j) = h, fJ(h, j) = j form a fixed
point free pair, hence any Γ-Galois extension has a Hopf Galois
structure of type G.
Another example (Byott) is (Sn−1 × Zn,Sn)–the two groups have
different composition series.
While on Γ = Sn ...
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Γ = Sn or An

Extending work of [CaC99] is some recent work of Crespo, Rio and
Vela [CRV19] and Tsang [Ts20] on realizability of (Sn,G) for various
groups G.
[CaC99] showed that for n = 5 or ≥ 7, (Sn,G) is realizable for G = Sn
or An × C2.

Tsang [Ts20] proved:

Theorem
For n = 5 or n ≥ 7, (Sn,G) is realizable only for G = Sn and An × C2.

The case n = 5 had previously been done in [CRV18].
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Γ = S6,S4,A4

For n = 6, [CaC99] and [Ts20] together yield

Theorem
(S6,G) is realizable for G = S6,A6 × C2 and M10 and not realizable for
any other group.

M10 is the Mathieu group of degree 10. It has a subgroup of index 2
isomorphic to A6. So this result supports Byott’s conjecture that if Γ is
not solvable and (Γ,G) is realizable, then G is not solvable.
Crespo, Rio and Vela [CRV18] also looks at the case n = 4:

Theorem

(A4,G) is realizable only for G = A4 and C3 × V4; (S4,G) is realizable
only for G = S4 and the direct products A4 × C2,S3 × V4 and C6 × V4.
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If (Γ,G) is realizable then (G, Γ) is also?

The answer is often no. For example, as Kohl [13] showed, for n = 2pq
where p = 2q + 1 and p,q are primes, then (Γ,G) is not realizable in
the four (of 36) cases where Γ is Dpq or Dq ×Cp and G = Cp o Cp−1 or
(Cp o Cq)× C2.
Also, for p = 2, there are cases where Γ is cyclic of order 2n and G is
not cyclic, where (Γ,G) is realizable but (G, Γ) is not, as can be seen
by comparing Byott’s results in the former case with Rump’s in the
latter case.
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Bi-skew braces

But in some cases the answer is yes: when a realizable pair (Γ,G)
yields a biskew brace. I talked about this last year.
A biskew brace is a set B with two group operations ◦ and ∗ so that B
is a skew brace with either group acting as the additive group. Then
both (B◦,B∗) and (B∗,B◦) are realizable.
There are at least two non-trivial general settings for bi-skew braces:
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semi-direct products

One is where G is the semidirect product of two groups, G = H o J,
and Γ = H × J.

It is known from [CRV16] that if Γ is a semidirect product of two groups
H and J, then (Γ,G) = (H o J,H × J) is realizable. The Hopf Galois
structure so constructed is called induced.

By the method of fixed point free pairs of homomomorphisms,
(H × J,H o J) is realizable, and the corresponding skew brace B with
B◦ = H × J and B∗ = H o J is a biskew brace. Thus the pair
(H o J,H × J) is also realizable, recovering the result of [CRV16].
An example: if n is squarefree, then for every group Γ of order n,
(Γ,Cn) is realizable.
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Radical algebras A with A3 = 0

Another setting for biskew braces is where G is the additive group A+

of a radical algebra A. In general, the pair (A◦,A+) is realizable. But if
also A3 = 0, then (A, ◦,+) is a biskew brace, so (A+,A◦) is also
realizable.
Thus, since every metabelian group Γ is the adjoint group of a radical
algebra A with A3 = 0, we have

Theorem
If Γ is a metabelian group, then there is an abelian group G so that
both (Γ,G) and (G, Γ) are realizable.
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A final example

There are many examples. One I’ll mention is the non-commutative
Fp-algebra A of dimension 6 over Fp, p odd, generated by
x , y , z,a,b, c with xy = a, yz = b, zx = c and all other products of
basis elements = 0. So A3 = 0. Then with A◦ defined by the operation
u ◦ v = u + v + uv , A◦ is metabelian but not a semidirect product, and
both (C6

p ,A◦) and (A◦,C6
p) are realizable.
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On bi-skew braces

As we saw yesterday (or will today) A. Caranti, T. Kohl and A. Koch
have obtained examples of bi-skew braces, some related to multiple
holomorphs, that go beyond the examples just described.
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Summary

This is far from a complete survey–I’m sure I’ve missed realizability
results, especially in the brace theory literature.

It has also been abundantly clear since Byott’s simple groups paper
(2004) that the problem of realizability of pairs of groups (Γ,G) can
involve deep results in finite group theory.
So I’m confident that we are very far from the last word on the subject!
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Thank you!
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